Ver. 2312-00

HelixAmp™ FastLAMP Kit (Ver. 3.0)

Kit Contents

HelixAmp™ FastLAMP Kit (Ver. 3.0)				
Cat. No.	FLMP3-100 (100rxns)	FLMP3-500 (500rxns)		
FastLAMP Enzyme V3	0.1ml	0.1ml x 5ea		
5x FastLAMP Buffer V3 (Mg-free)	0.5ml	0.5ml x 5ea		
100mM MgSO ₄	0.5ml	0.5ml x 5ea		
D-Solution	1ml	1ml x 5ea		
Instructions for Use	1ea	1ea		

Description

HelixAmpTM FastLAMP Kit (Ver. 3.0) provides simple and fast(within 20 minutes) target DNA amplification using loop-mediated isothermal Amplification (LAMP). Especially this kit suppress nonspecific product formation in isothermal amplification. Kit contents consists 5x FastLAMP buffer V3 (Mg-free), FastLAMP Enzyme V3 and a D-Solution. The 5x FastLAMP Buffer V3 (Mg-free), optimized for fast amplification, contains buffering reagents, dNTPs, and salts. The FastLAMP Enzyme V3 is composed of a newly engineered *Bst* DNA Polymerase that provides improved amplification reaction properties. The novel Bst DNA polymerase enhances the DNA polymerization speed and allows the fast isothermal amplification reaction.

Application

Isothermal amplification (LAMP) of DNA target

Store below -20℃

Shelf life

NanoHelix Co., Ltd. F711-1(Rev.0)

Quality Control

By NanoHelix's ISO 13485-certified Quality Management System, each lot of **HelixAmp™ FastLAMP Kit (Ver. 3.0)** was tested against predetermined specifications to ensure consistent product quality.

Protocol

1. Template preparation

Purified DNA sample using a commercial DNA preparation kits or a manual method can be applied directly to this assay. **Optionally** for better amplification and detection sensitivity, we recommend to use the **D-Solution** provided in this kit. **D-Solution** helps to denature the template DNA and induces efficient primer binding to its target sequence. The denatured template can be prepared by adding 1/10 volume of the D-Solution to the DNA sample.

Ex) DNA Sample 50ul + D-Solution 5ul

2. Reaction Mixture

LAMP products can be analyzed by examining the end-point product or real-time assay. Prepare the reaction mix according to the following table for the selected analysis method.

Components	For end-point assay	For real-time assay (intercalating dye)
Template	1 ~ 5µl	1 ~ 5µl
5x FastLAMP Buffer V3 (Mg-free)	5μl	5μΙ
FastLAMP Enzyme V3	1μΙ	1μΙ
100mM MgSO ₄ 1)	1.75~2.25µl (Final 7~9mM)	1.75~2.25µl (Final 7~9mM)
10x LAMP Primer mix ²⁾	2.5µl	2.5µl
Fluorescent dye ³⁾	-	x μl
RNase-free Water	Adjust to final 25µl	

Adjusting the MgSO₄ concentration according to the primer set used is recommended. Begin by using MgSO₄ at a final concentration of 8 mM. If encountering low efficiency, consider employing 9 mM MgSO₄. For addressing non-specific or NTC amplification issues, modify the MgSO₄ concentration to 7 mM.

NanoHelix Co., Ltd. F711-1(Rev.0)

For simplicity in setting up reactions, we recommend making stocks of the LAMP primers at a usable concentration. For example, we suggest a following **10x LAMP Primer Mix** containing all six LAMP primers. If there is low-efficiency or non-specific amplification, modify the primer concentration or design a new set of primers for the target sequence.

10x LAMP Primer Mix			
LAMP primers	Primer concentration.		
FIP/BIP	16 μM each		
F3/B3	2 μM each		
LF/BF	8 μM each		

Recommend using final 0.4x SYTO9 or 0.1~0.2x SYBR Green I or 0.1~0.3x EvaGreen dye (not supplied in this kit). If utilizing a probe, we recommend employing the "FastLAMP Kit (Ver. 2.0)."

3. Reaction Condition

For end-point assay:

Incubate at 65°C for 30 minutes. Time can be extended as necessary for very low copy targets, challenging sample types, etc. Analysis the reaction product by a gelelectrophoresis or other detecting tools including colorimetric and fluorescence detection, turbidity observation, lateral flow devices, etc.

For real-time assay (intercalating dye):

Use a real-time PCR machine or an isothermal amplification instrument to run the assay. Set the instrument to a constant incubation temperature at 65°C. Measure the fluorescence intensity at every 1 min for 30 minutes. The reaction time can be increased as necessary for very low copy targets, challenging sample types, etc.

Products

Cat. No.	Products	Size
FLMP3-100	HelixAmp™ FastLAMP Kit (Ver. 3.0)	100rxns
FLMP3-500	HelixAmp™ FastLAMP Kit (Ver. 3.0)	500rxns

NanoHelix Co., Ltd. F711-1(Rev.0)

A-dong and B-dong, 43-15, Techno 5-ro, Yuseong-Gu, Daejeon, 34014, Republic of Korea TEL: 82-42-867-9055, FAX: 82-42-867-9057